

Viscosity Process Analyzer VISC-4

Application

The BARTEC BENKE Viscosity Process Analyzer (VISC-4) is a **continuously** kinematic viscosity measuring capillary analyzer suited to measure the viscosity of a product. The VISC-4 operates online. It serves to monitor/maintain product quality for the in-spec production of mineral oil products.

Three basic variants are available:

measuring temperature 20 to 60°C (68 to 140°F) measuring temperature 41 to 60°C (106 to 140°F) measuring temperature 61 to 100°C (142 to 212°F)

Each variant available with following measuring ranges:

viscosity 0.7 to 30 cSt viscosity 10 to 500 cSt viscosity 200 to 1000 cSt

Special Features

- Direct and continuous measurement of kinematic viscosity
- Direct comparison with laboratory results without any need for conversion
- Integral measurement of the density
- Calculation and display of the dynamic viscosity
- Temperature control and insulating system without oil bath/pumps
- Minimized maintenance requirements
- Compliance of the temperature stability (0.02 K) as defined in standard ASTM D 445
- Necessity of Hagenbach correction is elminated
- Multi-stream capability
- Automatic rinsing and draining facility
- Integrated failure diagnosis and self monitoring
- No atmospheric drain required, backpressure at analyzer outlet permitted
- Single-Phase Power Supply
- Wide range of acceptable sample- and coolant temperature at analyzer inlet
- Available communication interfaces:
 - Modbus/RTU, Modbus/TCP (bidirectional)
 - Remote Access via modem, ISDN, LAN, VPN

Make your decision for a strong partner!

Choose BARTEC BENKE also for

- Fast Loop Systems
- Sample Conditioning Systems
- Validation Systems
- Recovery Systems
- Chillers
- Air Conditioning Systems/HVAC
- Pre Commissioned Analyzer Shelters/Turn-Key Solutions


BARTEC BENKE

YOUR competent partner for safe plants

from BARTEC
BENKE have
many years
of experience in
plant safety.
They create
solutions which
you can rely on:
e c o n o m i c a l,
r e liable and
for the future.

BARTEC BENKE

Method

The value of kinematic viscosity results from the product of the measured passage time and the device constant of the capillary: $v = C \,^{\star} \, t$. As viscosity is highly dependent on the temperature, the temperature of the liquid during the measurement has to be regulated precisely with minimum variation (0.02 K in accordance with ASTM D 445). For a continuous determination of the viscosity of a liquid during the production process the liquid is controlled in viscometers through a capillary. From the mass flow rate through the capillary and from the pressure drop over the length of the capillary, the current value of the kinematic viscosity of the liquid is ascertained by applying the law of Hagen-Poiseuille.

Note: Illustrations of this brochure show an exemplary VISC-4 analyzer.

Viscosity Process Analyzer VISC-4

Explosion protection

Ex protection type Certification

II 2G IIC T3 or T4 depending on T_M
*

TÜV 09 ATEX 554794

CSA certificate no. pendina

📜 Technical data

Type and method continuously analyzing kinematic

> viscosity, capillary-type according to ASTM D 445, DIN EN ISO 3104, IP 71

Measuring T_{M} : 20 to 60 °C (68 to 140 °F) temperatures and M T_{M} : 41 to 60 °C (106 to 140 °F) H T_{M} : 61 to 100 °C (142 to 212 °F) ranges (variants)

t viscosity 0.7 to 30 cSt

v viscosity 10 to 500 cSt/200 to 1000 cSt

Repeatability formulated oils: typ. 0.03 cSt at 100 °C

Reproducibility ≤ DIN EN/ASTM

Product streams 2 x sample, 1 x validation

(additional hardware required)

Electrical data

Nominal voltage AC 230 V \pm 10 %, 1 phase; 50 Hz

other ratings on request

Maximum power consumption

approx. 500 W

Protection class IP 54, (NEMA 12)

Ambient conditions

Ambient temperature operation 5 to 40 °C (41 to 104 °F) **Ambient humidity** operation 5 to 80 % relative humidity.

non-corrosive

Sample

Quality filtered 10 µm, bubble-free

Consumption/ flow rate

3.8 to 10 l/h (depending on variant)

Pressure at inlet

min. 3 to max. 14 bar (depending on variant)

Temperature at inlet

above T_M - 40K typically

below $T_M + 10K$

depending on application

Utilities

■ Instrument air

Consumption min. 1.4 Nm3 per flushing cycle during

> start-up (7x housing volume) ≈ 1 Nm³/h in normal operating mode

Pressure at inlet 3 to 6 bar

Quality class 2 or better according to ISO 8573-1

Signal outputs and inputs/harwired interface

various analog and digital signals

available:

to be specified, see options

Electrical data of signal outputs and inputs

Analog outputs 2×4 to $20 \text{ mA } 800 \Omega$ out;

active isolated on request

Digital outputs DC 24 V; max. 0.5 A **Digital inputs** high DC 15 to 28 V

low DC 0 to 4 V

Auxiliary power

supply output DC 24 V, max. 0.8 A

Control unit

Central control unit Industrial PC Windows XP® **Operating system**

Control software PACS

User interfaces

Display TFT display with touch function

800 x 600 pixels

Keyboard virtual keyboard, controlled via

TFT display with touch function

Connections

Pipe fittings Swagelok® 6 mm/12 mm

other fittings on request

Weight and dimensions

Weight approx. 250 kg (without options) approx. 1190 x 1930 x 710 mm **Dimensions** $(W \times H \times D)$

Space requirement right: 150mm/left: 100mm

Optional signal outputs and inputs

Digital outputs alarm, ready, indication of active stream,

> indication of validation cycle, indication of rinsing/draining cycle

Digital inputs activation of a stream, activation of a

validation cycle, analyzer reset

max. 3 of the following process variables **Analog outputs**

> can be selected: kinematic viscosity, dynamic viscosity, density, measuring

temperature, mass flow rate,

differential pressure

MODBUS interface MODBUS/RTU via RS485 or RS422

or fiber optic cable

MODBUS/TCP via fiber optic cable

Remote access via modem, ISDN,

Ethernet via fiber optical or VPN

 ${}^{*}T_{M}$ = measuring temperature

Important notice VISC-4 is subject to continuous product improvement, specifications are preliminary and may be subject to change without notice.